Extracting Graphite Sketch of the Mural Using Hyper-spectral Imaging Method
نویسندگان
چکیده
Original scientific paper Many contaminants appear in murals as time passes, which make the original mural blurred and difficult to recognize; therefore, extracting a clear graphite sketch of the mural is significant. In this study, we used invisible spectra, particularly near-infrared (NIR) bands, to detect the graphite information and strengthen the features of the mural information to obtain a graphite sketch. This is the first study to extract the contour line from the draft of the mural using hyper-spectral imaging (HSI) technology. First, spectral matching methods were used to identify the pigment of the contour line and graphite was determined as the main pigment of the draft. Then, the characteristic bands were selected by analysing the spectra of the pigments. After that, the information extraction method was used to extract the graphite information. The results showed that the method could improve the efficiency of graphite information extraction significantly. The key steps of the current method involved extracting the graphite contour line end-member spectrum, followed by mapping the grey image of the graphite contour line spectrum. Finally, the visually enhanced image was reconstructed using the alpha blending fusion method with the original visible image and the graphite information image. The efficiency of results is evaluated by quantitative methods. The study also explained and discussed the two key points of election thresholds in obtaining the graphite sketch. These results demonstrate that the method is efficient for extracting graphite sketch based on hyper-spectral data of mural, and that it could provide useful information to explore cultural relics and to support some other protection researches.
منابع مشابه
Terahertz imaging for non-destructive evaluation of mural paintings
The feasibility of applying time-domain, terahertz spectroscopic imaging to the evaluation of underdrawings and paint layers embedded within wall paintings is demonstrated. Metallic and dielectric paint patterns and a graphite drawing are resolved through both paint and plaster overlayers using a pulsed-terahertz reflectometer and imaging system. We calculated the bulk refractive indices of fou...
متن کاملA Nonlinear Grayscale Morphological and Unsupervised method for Human Facial Synthesis Based on an Example Image
Human facial generation of example image is used as a requirement for biometric applications for the purpose of identifying individuals. In this paper, face generation consists of three main steps. In the first step, detection of significant lines and edges of the example image are carried out using nonlinear grayscale morphology. Then, hair areas are identified from the face of sample. The fin...
متن کاملSpectral Estimation of Printed Colors Using a Scanner, Conventional Color Filters and applying backpropagation Neural Network
Reconstruction the spectral data of color samples using conventional color devices such as a digital camera or scanner is always of interest. Nowadays, multispectral imaging has introduced a feasible method to estimate the spectral reflectance of the images utilizing more than three-channel imaging. The goal of this study is to spectrally characterize a color scanner using a set of conventional...
متن کاملAutomatic Road Detection and Extraction From MultiSpectral Images Using a New Hierarchical Object-based Method
Road detection and Extraction is one of the most important issues in photogrammetry, remote sensing and machine vision. A great deal of research has been done in this area based on multispectral images, which are mostly relatively good results. In this paper, a novel automated and hierarchical object-based method for detecting and extracting of roads is proposed. This research is based on the M...
متن کاملSpectral Separation of Quantum Dots within Tissue Equivalent Phantom Using Linear Unmixing Methods in Multispectral Fluorescence Reflectance Imaging
Introduction Non-invasive Fluorescent Reflectance Imaging (FRI) is used for accessing physiological and molecular processes in biological media. The aim of this article is to separate the overlapping emission spectra of quantum dots within tissue-equivalent phantom using SVD, Jacobi SVD, and NMF methods in the FRI mode. Materials and Methods In this article, a tissue-like phantom and an optical...
متن کامل